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Reversible cyclisation of a sulfonated arylazo compound
containing an o-acetylamino substituent
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Abstract

A sulfonated o-acetylamino arylazo compound unexpectedly cyclised to a cationic benzo-1,2,4-triazinium species under thermal or
acid conditions, reversible with base. The same substrate underwent trans to cis-azo photoisomerisation, observable by NMR spectro-
scopy, under steady state laser irradiation conditions.
� 2007 Elsevier Ltd. All rights reserved.
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The o-acylamino arylazo substructure 1 is common
amongst dyestuffs including commercialised materials,
simultaneously introducing favourable coloristic properties
and remaining stable under most conditions to which it is
likely to be exposed.1 In the case of a specific example of
1, we recently encountered an uncharacteristic reaction
for this substructure. Precedent was initially found only
amongst two patents, although in one case the material
was further published in a relatively obscure journal (vide
infra). Even so, characterisation data were lacking and
there was a degree of ambiguity in the structure assign-
ment, as discussed further below. Azo dyes find application
in modern technologies well beyond conventional colour-
ation. Furthermore, exceptions to empirical reactivity gen-
eralisations are of wider interest. For both of these reasons
we report here the results of our studies.

The context of our work was an investigation by a con-
catenated laser irradiation-NMR experiment2 of the photo-
reactivity of the water-soluble azo dye 2. This was expected
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to be a routine extension of previous studies, in which a
consistent pattern of behaviour was established amongst
relatively close structural analogues.3 In the course of our
studies, it was found that 2 unexpectedly undergoes ther-
mal or acid-induced cyclisation to a cationic 1,2,4-triazi-
nium species 3, and that the cyclisation is reversible.

The key 1D and 2D NMR assignments for the starting
material 2 are summarised in Table 1.4 Some of the pro-
ton shift assignments for 2 could be made by inspection,
while others depended on a 1H–1H NOESY experiment.
One benzenoid singlet correlated with the methoxy group
and was assigned as the proton ortho to the azo linkage.
The other benzenoid singlet correlated with the amide
NH proton and is thus ortho to the amide and NH2 groups.
Interestingly, the amide NH also showed NOE correlation
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Table 1
1H NMR dataa

N
N

NH2

SO3Na

NaO3S

OMe

R
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10 12

2, 7 R = -NHCOMe
3 R = -N+:C(Me)-

Noa 2 3 7

db d 10 mM Dd 10 mM db Dd

1 (1) 9.36 9.16 �0.20 8.70 �0.66
3 (4) 8.00 8.07 +0.07 7.97 �0.03
4 (5) 7.49 7.64 +0.15 7.42 �0.07
5 (6) 8.88 8.98 +0.10 8.82 �0.06
7 (9) 8.51 8.25 �0.26 7.35 �1.16
8 (18) 7.36 7.57 +0.21 5.79 �1.57
10 (15) 7.68 6.92 �0.76 7.64 �0.04
12 (22) 6.18 8.98, 9.59 c 5.87 �0.31
NHAc 9.97 9.93 �0.04
OMe 3.90 4.11 +0.21 2.80 �1.10
CMe 2.24 2.65 +0.41 2.22 �0.02

a Proton numbers refer to the arbitrary numbering scheme shown, which
is consistent across 2, 3 and 7. Italicised numbers in brackets refer to the
atom designation used for complete NMR assignment of 3 (see Supple-
mentary data for details). Dd values for 3 and 7 are differences with shifts
of 2.

b Shift data for 2 and 7 taken from the PSS mixture of an initial 0.1 mM
DMSO-d6 solution of 2 irradiated at 530 nm.

c 1H resonances for the NH2 group not observed for 2 at 10 mM
concentration.
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Fig. 1. Significant NMR correlations in 1,2,4-triazinium derivative 3,
determined by a combination of [1H–1H] NOESY, [1H–15N] HSQC, and
[1H–15N] HMBC experiments.
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to both naphthalenic protons ortho to the azo group, indi-
cating fast torsion about one or both of the arylazo C–N
bonds on the NMR timescale. The NH2 group of 2 showed
concentration-dependent behaviour, and only appeared at
low concentration (0.1 mM), as a singlet at d >6.18 ppm.
Other features of the NMR spectra suggest that 2 aggre-
gates or at least dimerises in DMSO solution at concentra-
tions above 0.1 mM.5
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It was initially observed that a 10 mM solution of 2 in
DMSO-d6 gradually gave rise to a second series of peaks
in its 1H NMR spectrum, eventually showing about 90%
conversion to the new species after 15 days at ambient tem-
perature. Warming a DMSO solution of 2 or treatment of
its aqueous solution with acid led cleanly and quickly to the
same new product as indicated by HPLC and NMR com-
parison. The new product, assigned structure 3 as discussed
below, could be isolated from either reaction mixture.4

Basification of the solutions of 3 brought about reversion
of the reaction, evidenced by HPLC behaviour and regen-
eration of the 1H NMR spectrum characteristic of 2. The
2¡3 interconversions were repeatable a number of times
by a continuing sequence of alternate acidification and
basification. The electrospray mass spectrum of 3 showed
loss of OH with respect to 2, and its IR spectrum revealed
loss of the amide peaks. Like 2 (kmax 482 nm in DMSO),
the product 3 is coloured (kmax 431 nm in DMSO), but
unlike azo dye 2, product 3 on a TLC plate is highly fluo-
rescent under UV light, a property atypical of conventional
arylazo structures. The gross 1H NMR features present in 2

were also present in 3 apart from the loss of the amide NH
resonance at d ca.10 ppm previously present in 2. Key 2D
NMR correlations are summarised diagrammatically in
Figure 1. A [1H–15N] HSQC NMR experiment6 showed
two peaks corresponding to labile protons each bound to
a single nitrogen atom, confirming the existence of a single
NH2 group. This is apparently not undergoing fast torsion
about the C–N bond on the NMR timescale. Further
[1H–15N] HMBC correlations6 confirmed that the NH2

group is positioned ortho to a benzenoid proton, which also
displayed a NOE correlation with both of the NH2 pro-
tons. This benzenoid proton further correlated with
another N atom over three bonds, and this in turn showed
3-bond correlation to the non-methoxy methyl group. This
methyl group also showed a second three-bond correlation
with yet another nitrogen atom. Finally, this nitrogen atom
showed 3-bond correlations to two meta-coupled naphtha-
lene doublets, proving it to be one of the former azo nitro-
gen atoms, a result that can only derive from the cyclised
structure 3. The relative shielding of the proton ortho to the
NH2 group in 3 (H-10, Dd = �0.76, Table 1) is consistent
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with the loss of the deshielding o-amide carbonyl group
of 2.

Cyclisation is not general even for closely related ana-
logues of 2. For example, dye 4 based on a 4-N-halotri-
azinyl derivative of 2 is stable to mild acid treatment, and
shows no sign of cyclisation analogous to that now being
reported for 2. The weaker donor strength of the 4-triazi-
nylamino group of 4 compared with the NH2 group of 2

is presumably sufficient to decrease the nucleophilicity of
the conjugated azo nitrogen and thus vitiate attack by
the latter at the o-acetylamino group. Furthermore, simply
replacing the 4,8-disulfonate substituents of 2 by 3,6,8-tri-
sulfonate gives an analogous dye, which does not cyclise
under the conditions described for 2.4
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Cyclisation of the substructure 1 to benzo-1,2,4-triazine
derivatives has only been reported sparsely. In a first patent
and attendant paper,7 it was claimed that 4-amino-naph-
thylazo dyes containing an appropriately positioned acetyl-
amino group cyclise to anti-bacterial benzotriazine
derivatives 5. Here, the benzo-1,2,4-triazine heterocyclic
system was shown in a neutral quinonoid form due to
the deprotonation of the appended NH2 group. Further-
more, it was reported that simpler examples of 1 did not
undergo the same ring closure. In a second patent,8 it
was reported that non-sulfonated o-NHCOR arylazo dyes
in various acidic or electrophilic solvents cyclised to cat-
ionic 1,2,4-triazinium products 6, which could be isolated
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as coloured salts by the addition of appropriate counter
anions, and which were claimed to be of use as dyes for
polyacrylonitrile. Although both these patents provide
precedent for the reaction now being reported for 2, in nei-
ther case was the characterisation of the new 1,2,4-benzo-
triazine-based heterocyclic system reported in the
published patent specification. Moreover, our evidence
indicates that the NH2 substituent of 3 does not undergo
deprotonation to give imine as suggested for 5, at least
under our conditions, and that the 2-arylated 1,2,4-triazine
heterocycle bears a formal positive charge analogous to 6.
None of the prior literature reported ready base-induced
reversibility of the cyclisation.

The technique underpinning our photochemical studies
uses a coupled laser irradiation-NMR experiment.2 In this,
a solution of a chromophore of interest in a conventional
NMR sample tube in the cavity of an NMR spectrometer
is photo-excited with continuous laser irradiation delivered
to the sample by means of an optical fibre. Various NMR
experiments are then applied to an analysis of any new,
sometimes metastable, species generated. Moreover, the
kinetics of the various reaction pathways can be analysed
quantitatively both under conditions of irradiation as well
as when the laser source is switched off. The photoiso-
merism of trans-arylazo dyes and the photo and thermal
reversion of the cis-isomer thus generated have been of
particular interest.9 Under these conditions, the benzotri-
azinium species 3 is stable to irradiation in DMSO-d6. In
contrast, its trans-azo precursor 2 undergoes the expected
trans to cis-azo photoisomerisation to 7 in DMSO-d6 when
irradiated at 530 nm in a 0.1 mM solution. The photoiso-
merisation is photoreversible and at a concentration of
0.10 mM a photostationary state is attained comprising
49% of 2 and 51% of 7. Removal of the laser irradiation
results in thermal reverse isomerisation of 7 back to 2

(100%); thus the cis-azo species 7 is only metastable, as
expected, and cannot be isolated. The 1H NMR spectrum
of 7 is related to that of 2 in a manner wholly analogous
to the spectra of trans and cis isomers of sulfonated azo
dyes seen in previous studies.3 Thus, all resonances for pro-
tons in 7 are shifted to lower d ppm compared with those
for trans-isomer 2 (Table 1). Particularly, large shifts are
observed for the OMe group (Dd = �1.1 ppm) and its
ortho-proton (Dd = �1.57 ppm), as well as for the two
naphthyl protons ortho to the azo linkage (Dd = �1.17
and �0.66 ppm).
The calculated10 conformation for the free acid
analogue11 of 7 (Fig. 2) helps explain these shifts. The
non-planar ground state conformation is presumably
favoured because of energetically favourable retention of
the amide NH� � �N(azo) interaction,12 while minimising
unfavourable non-bonded naphthyl–phenyl interactions
now introduced across the cis-azo structure of 7 by torsions
about the C–N(azo) bonds. Furthermore, the methyl of the
OMe group is oriented away from the o-NH2 group, pre-
sumably to minimise steric clash and to optimise inter-
action between NH and a lone electron pair on O. The



Fig. 2. Minimum energy structures for the free-acid analogues of (a) 2 and
(b) 7. DFT calculations were conducted at the B3LYP/6-31g(d,p) level.
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result of these effects is that the OMe group and its o-CH
proton sit over a shielding face of the naphthyl group. Sim-
ilarly, the two protons of the naphthyl ring ortho to the azo
group are positioned over the benzenoid ring, also resulting
in shielding as reflected by the observed differences in
chemical shifts (Table 1).

There is no evidence to suggest 7 undergoes cyclisation
to 3 when generated under the steady state laser irradiation
conditions.

Acknowledgement

DIG was supported by a studentship from DyStar UK
Ltd.

Supplementary data

Additional detailed spectroscopic data are included.
Supplementary data associated with this article can be
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